Loss and spontaneous recovery of forelimb evoked potentials in both the adult rat cuneate nucleus and somatosensory cortex following contusive cervical spinal cord injury.

نویسندگان

  • Stephen M Onifer
  • Christine D Nunn
  • Julie A Decker
  • Beth N Payne
  • Michelle R Wagoner
  • Aaron H Puckett
  • James M Massey
  • James Armstrong
  • Ezidin G Kaddumi
  • Kimberly G Fentress
  • Michael J Wells
  • Robert M West
  • Charles C Calloway
  • Jeffrey T Schnell
  • Christopher M Whitaker
  • Darlene A Burke
  • Charles H Hubscher
چکیده

Varying degrees of neurologic function spontaneously recovers in humans and animals during the days and months after spinal cord injury (SCI). For example, abolished upper limb somatosensory potentials (SSEPs) and cutaneous sensations can recover in persons post-contusive cervical SCI. To maximize recovery and the development/evaluation of repair strategies, a better understanding of the anatomical locations and physiological processes underlying spontaneous recovery after SCI is needed. As an initial step, the present study examined whether recovery of upper limb SSEPs after contusive cervical SCI was due to the integrity of some spared dorsal column primary afferents that terminate within the cuneate nucleus and not one of several alternate routes. C5-6 contusions were performed on male adult rats. Electrophysiological techniques were used in the same rat to determine forelimb evoked neuronal responses in both cortex (SSEPs) and the cuneate nucleus (terminal extracellular recordings). SSEPs were not evoked 2 days post-SCI but were found at 7 days and beyond, with an observed change in latencies between 7 and 14 days (suggestive of spared axon remyelination). Forelimb evoked activity in the cuneate nucleus at 15 but not 3 days post-injury occurred despite dorsal column damage throughout the cervical injury (as seen histologically). Neuroanatomical tracing (using 1% unconjugated cholera toxin B subunit) confirmed that upper limb primary afferent terminals remained within the cuneate nuclei. Taken together, these results indicate that neural transmission between dorsal column primary afferents and cuneate nuclei neurons is likely involved in the recovery of upper limb SSEPs after contusive cervical SCI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chondroitinase ABC promotes selective reactivation of somatosensory cortex in squirrel monkeys after a cervical dorsal column lesion.

After large but incomplete lesions of ascending dorsal column afferents in the cervical spinal cord, the hand representation in the contralateral primary somatosensory cortex (area 3b) of monkeys is largely or completely unresponsive to touch on the hand. However, after weeks of spontaneous recovery, considerable reactivation of the hand territory in area 3b can occur. Because the reactivation ...

متن کامل

Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors Aid in Functional Recovery of Sensory Pathways following Contusive Spinal Cord Injury

BACKGROUND Transplantations of human stem cell derivatives have been widely investigated in rodent models for the potential restoration of function of neural pathways after spinal cord injury (SCI). Studies have already demonstrated cells survival following transplantation in SCI. We sought to evaluate survival and potential therapeutic effects of transplanted human embryonic stem (hES) cell-de...

متن کامل

Growth of new brainstem connections in adult monkeys with massive sensory loss.

Somatotopic maps in the cortex and the thalamus of adult monkeys and humans reorganize in response to altered inputs. After loss of the sensory afferents from the forelimb in monkeys because of transection of the dorsal columns of the spinal cord, therapeutic amputation of an arm or transection of the dorsal roots of the peripheral nerves, the deprived portions of the hand and arm representatio...

متن کامل

Influence of Sexuality in Functional Recovery after Spinal Cord Injury in rats

  Background: Spinal cord injury (SCI) is a major clinical condition and research is commonly done to find suitable treatment options. However, there are some degrees of spontaneous recovery after SCI and gender is said to be a contributing factor in recovery, but this is controversial. This study was done to compare the effects of sexual dimorphism on spontaneous recovery after spinal cord inj...

متن کامل

Lavandula angustifolia Extract Improves the Result of Human Umbilical Mesenchymal Wharton's Jelly Stem Cell Transplantation after Contusive Spinal Cord Injury in Wistar Rats

Introduction. The primary trauma of spinal cord injury (SCI) results in severe damage to nervous functions. At the cellular level, SCI causes astrogliosis. Human umbilical mesenchymal stem cells (HUMSCs), isolated from Wharton's jelly of the umbilical cord, can be easily obtained. Previously, we showed that the neuroprotective effects of Lavandula angustifolia can lead to improvement in a contu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 207 2  شماره 

صفحات  -

تاریخ انتشار 2007